Invoking Deep Learning for Joint Estimation of Indoor LiFi User Position and Orientation

نویسندگان

چکیده

Light-fidelity (LiFi) is a fully-networked bidirectional optical wireless communication (OWC) technology that considered as promising solution for high-speed indoor connectivity. In this paper, the joint estimation of user 3D position and equipment (UE) orientation in LiFi systems with unknown emission power investigated. Existing solutions problem assume either ideal system settings or perfect knowledge UE states, rendering them unsuitable realistic systems. addition, these consider non-line-of-sight (NLOS) links channel gain source deterioration performance instead harnessing components improving performance. This mainly due to lack appropriate techniques can extract information hidden components. against above limitations, assumed be connected at least one access point (AP), i.e., active link. Fingerprinting employed an technique received signal-to-noise ratio (SNR) used metric, where both line-of-sight (LOS) NLOS are considered. Motivated by success deep learning solving several complex prediction problems, we employ two artificial neural network (ANN) models, based on multilayer perceptron (MLP) second convolutional (CNN), map efficiently instantaneous SNR orientation. Through numerous examples, investigate proposed schemes terms average error, precision, computational time, bit error rate. We also compare k-nearest neighbours (KNN) scheme, which widely localization problems. It demonstrated achieve significant gains superior KNN scheme.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carrying Position Independent User Heading Estimation for Indoor Pedestrian Navigation with Smartphones

This paper proposes a novel heading estimation approach for indoor pedestrian navigation using the built-in inertial sensors on a smartphone. Unlike previous approaches constraining the carrying position of a smartphone on the user's body, our approach gives the user a larger freedom by implementing automatic recognition of the device carrying position and subsequent selection of an optimal str...

متن کامل

investigation of single-user and multi-user detection methods in mc-cdma systems and comparison of their performances

در این پایان نامه به بررسی روش های آشکارسازی در سیستم های mc-cdma می پردازیم. با توجه به ماهیت آشکارسازی در این سیستم ها، تکنیک های آشکارسازی را می توان به دو دسته ی اصلی تقسیم نمود: آشکارسازی سیگنال ارسالی یک کاربر مطلوب بدون در نظر گرفتن اطلاعاتی در مورد سایر کاربران تداخل کننده که از آن ها به عنوان آشکارساز های تک کاربره یاد می شود و همچنین آشکارسازی سیگنال ارسالی همه ی کاربران فعال موجود در...

Bottom-up estimation of joint moments during manual lifting using orientation sensors instead of position sensors.

L5/S1, hip and knee moments during manual lifting tasks are, in a laboratory environment, frequently established by bottom-up inverse dynamics, using force plates to measure ground reaction forces (GRFs) and an optoelectronic system to measure segment positions and orientations. For field measurements, alternative measurement systems are being developed. One alternative is the use of small body...

متن کامل

Using Inertial Sensors for Position and Orientation Estimation

In recent years, microelectromechanical system (MEMS) inertial sensors (3D accelerometers and 3D gyroscopes) have become widely available due to their small size and low cost. Inertial sensor measurements are obtained at high sampling rates and can be integrated to obtain position and orientation information. These estimates are accurate on a short time scale, but suffer from integration drift ...

متن کامل

Stochastic magnetic measurement model for relative position and orientation estimation

This study presents a stochastic magnetic measurement model that can be used to estimate relative position and orientation. The model predicts the magnetic field generated by a single source coil at the location of the sensor. The model was used in a fusion filter that predicts the change of position and orientation by integration of acceleration and angular velocity measured by inertial sensor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Journal on Selected Areas in Communications

سال: 2021

ISSN: ['0733-8716', '1558-0008']

DOI: https://doi.org/10.1109/jsac.2021.3064637